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Abstract

We illustrate how to consider a network of cameras as
a single generalized camera in a framework proposed by
Nayar [13]. We derive the discrete structure from motion
equations for generalized cameras, and illustrate the corol-
laries to the epi-polar geometry. This formal mechanism al-
lows one to use a network of cameras as if they were a single
imaging device, even when they do not share a common cen-
ter of projection. Furthermore, an analysis of structure from
motion algorithms for this imaging model gives constraints
on the optimal design of panoramic imaging systems con-
structed from multiple cameras.

1 Introduction

Using a set of images to solve for the structure of the
scene and the motion of the camera has been a classical
problem in Computer Vision for many years. For standard
pinhole cameras this is fundamentally a difficult problem.
There are strictly ambiguous scenes — for which it is im-
possible to determine all parameters of the motion or the
scene structure [1]. There are also effectively ambiguous
scenes, for which the structure from motion solution is ill-
conditioned and small errors in image measurements can
lead to potentially large errors in estimating the motion pa-
rameters [8, 21].

These limitations have led to the development of new
imaging geometries. Panoramic and omni-directional sen-
sors with a single center of projection (e.g. [15]) have many
direct corollaries to the pinhole camera model, including an
epi-polar geometry [24], a variant of the Fundamental Ma-
trix [10] and ego-motion constraints [12, 6]. The larger field
of view gives advantages for ego-motion estimation [5, 16].

Non-central projection cameras allow for greater free-
dom in system design because they eliminate the techni-
cally challenging task of constructing a system of cameras
which share a nodal point. One example of a multi-camera

Figure 1. A schematic of a multi-camera system for an
autonomous vehicle, including a forward facing stereo pair,
two cameras facing towards the rear, and a panoramic multi-
camera cluster in the middle. The lines represent the rays of
light sampled by these cameras. This paper presents tools
for motion analysis in which this entire system is viewed as
a single camera in the generalized imaging framework [13].

network where the cameras do not share a nodal point is il-
lustrated in 1. Specific multi-camera and catadioptic camera
designs have been introduced with an analysis of their imag-
ing geometry, calibration [11, 20, 14, 4], and the constraints
relating the 3D scene structure and the relative camera po-
sitions or motions [9, 7, 23].

Many natural camera systems, including catadioptric
systems made with conical mirrors and incorrectly aligned
lenses in standard cameras, have a set of viewpoints well
characterized by a caustic [25]. A further generalization
of the allowable camera geometry is the oblique camera
model [17] that applies to imaging geometries where each
point in the environment is imaged at most once. A simi-
lar formulation gives design constraints on what camera ge-
ometries result in stereo systems with horizontal epi-polar
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Figure 2. (Top) The generalized imaging model [13] ex-
presses how each pixel samples the light-field. This sam-
pling is assumed to be centered around a ray starting at a
point X,Y,Z, with a direction parameterized by(φ, θ), rel-
ative to a coordinate system attached to the camera. The
simplified model captures only the direction of the ray, pa-
rameterized by its Plücker vectorsq, q′.

lines [19].
The “generalized camera model” [13] is briefly intro-

duced in Section 2.1, and encompasses the imaging geom-
etry of all the camera designs discussed above. The main
contribution of this paper is to express a multi-camera sys-
tem in this framework and then to derive the structure from
motion constraint equations for this model. The differen-
tial structure from motion constraints give an error function
which defines a minimization problem for motion estima-
tion (summarized in Section 3). Considering the Fisher In-
formation Matrix of this error function makes it possible to
give quantitativecomparisons of different camera designs
in terms of their ability to estimate ego-motion (Section 4).

2 Background

2.1 Generalized Camera Model

The generalized camera model was introduced as a tool
to unify the analysis and description of the widely diverg-
ing sets of new camera designs. This model abstracts away
from exactly what path light takes as it passes through the
lenses and mirrors of an arbitrary imaging system. Instead,
it identifies each pixel with the region of space that affects
that sensor. A reasonable model of this region of space is
a cone emanating from some point. A complete definition
of the imaging model has been defined in terms of “rax-
els” [13], (see Figure 2). An image taken by a generalized
camera is defined as the set of raxel measurements captured
by the system.

A raxel defines how a pixel samples the scene. This sam-
pling is assumed to be centered around a ray starting at a
point X,Y,Z, with a direction parameterized by(φ, θ). This
pixel captures light from a cone around that ray, whose as-
pect ratio and orientation is given by(fa, fb,Υ). The light
intensity captured may also be attenuated, these radiometric
quantities may differ for every pixel.

For the geometric analysis of multiple images, we sim-
plify this calibration so that it only includes the definition of
the ray that the pixel samples. This gives a simpler calibra-
tion problem which requires determining, for each pixel, the
Plücker vectors of the sampled line. Since Plücker vectors
are required for the mathematical analysis presented later,
the following section gives a brief introduction.

2.2 Plücker Vectors

In order to describe the line in space that each pixel sam-
ples in this more general camera setting, we need a mech-
anism to describe arbitrary lines in space. There are many
parameterizations of lines, but Plücker vectors [18] give a
convenient mechanism for the types of transformations that
are required. The Plücker vectors of a line are a pair of 3-
vectors:q, q′, named the direction vector and moment vec-
tor. q is a vector of any length in the direction of the line.
Then,q′ = q × P , for any point P on the line. There are
two constraints that this pair of vectors must satisfy. First,
q · q′ = 0, and second, the remaining five parameters are
homogeneous, their overall scale does not affect which line
they describe. It is often convenient to force the direction
vector to be a unit vector, which defines a scale for the ho-
mogeneous parameters.

The set of all points that lie on a line with these Plücker
vectors is given by:

(q × q′) + αq,∀α ∈ R. (1)

If q is a unit vector, the point(q× q′) is the point on the line
closest to the origin andα is the (signed) distance from that
point.

2.3 Plücker Vectors of a Multi-Camera System

A pinhole camera whose nodal point is at the origin sam-
ples a pencil of rays incident on the origin. If the calibration
matrixK maps image coordinates to coordinates on the nor-
malized image plane, a pixel(x, y) samples along a ray with
Plücker vector〈K〈x, y, 1〉>, 0〉. The moment vector of the
Plucker ray is zero because the point(0, 0, 0) is on the ray.

A camera not at the origin has an internal calibration ma-
trix K, and a rotationR, and a translationT which trans-
form points from the camera coordinate system to the fidu-
cial coordinate system. In this case, the ray sampled by
a particular pixel on the camera a direction vectorq =
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RK〈x, y, 1〉>, and a moment vectorq × T . The imaging
geometry of the entire multi-camera system is represented
simply by the collective list of the rays sampled by the indi-
vidual cameras.

For a single camera, a differential motion on the im-
age plane defines a differential change in the direction
of the sampled ray. For a camera not centered at the
origin, the differential change in the direction vector is:
∂q(x,y)

dx = RK〈dx, 0, 0〉>, and ∂q(x,y)
dy = RK〈0, dy, 0〉>.

The differential change in the moment vector is:∂q′(x,y)
dx =

RK〈dx, 0, 0〉> × T , and∂q′(x,y)
dy = RK〈0, dy, 0〉> × T .

In Section 3.2, this will be used to define the relation-
ship between optic flow measurements in each camera and
the motion of the entire system. We proceed first, however,
with the constraints relating discrete motions of the camera
system to the image captured by each camera.

3 Motion Estimation

This section presents the structure from motion con-
straint equations for generalized cameras. We present first
the discrete motion equations — how a pair of correspond-
ing points constrain the rotation and translation between
camera viewpoints. Then we present the differential mo-
tion constraints relating continuous camera motions to optic
flow.

3.1 Discrete Motion

Suppose, in two generalized images, we have a corre-
spondence between pixel(x1, y1) in the first image and
pixel (x2, y2) in a second image. This correspondence im-
plies that the rays sampled by these pixels (〈q1, q1

′〉, and
〈q2, q2

′〉) must intersect in space. When the camera system
undergoes a discrete motion, the fiducial coordinate systems
are related by an arbitrary rigid transformation. There is a
rotationR and a translationT which takes points in the first
coordinate system and transforms them into the new coor-
dinate system.

After this rigid transformation, the Plücker vectors of the
first line in the second coordinate system become:

〈Rq1, Rq′1 + R(T × q1)〉 . (2)

A pair of lines with Pl̈ucker vectors〈qa, qa
′〉, and〈qb, qb

′〉
intersect if and only if:

qb · q′a + q′b · qa = 0. (3)

This allows us to write down the constraint given by the
correspondence of a point between two images, combining
Equations 2 and 3

q2 · (Rq′1 + R(T × q1)) + q′2Rq1 = 0.

This completely defines how two views of a point constrain
the discrete motion of a generalized camera. Using the con-
vention that[T ]x is the skew symmetric matrix such that
[T ]xv = T × v for any vectorv, we can write:

Generalized Epi-polar Constraint

q2
T Rq′1 + qT

2 R[T ]xq1 + q′2
T
Rq1 = 0. (4)

For standard perspective projection cameras,q′1 = q′2 =
0, and what remains:qT

2 R[T ]xq1 = 0, is the classical epi-
polar constraint defined by the Essential matrix. Strictly
speaking, this is not exactly analogous to the epi-polar con-
straint for standard cameras. For a given point in one image,
the above equation may have none, one, several, or an infi-
nite number of solutions depending on what the exact cam-
era geometry is. The name generalized epi-polar constraint,
however, is fitting because it describes how two correspond-
ing points constrain the relative camera motions.

Given the camera transformationR, T and correspond-
ing points, it is possible to determine the 3D coordinates of
the world point in view. Using Equation 1, and transform-
ing the first line into the second coordinate system, solving
for the position of the point in space amounts to finding the
intersection of the corresponding rays. This requires solv-
ing for the parametersα1, α2, which is the corollary of the
depth in typical cameras:

R((q1 × q′1) + α1q1) + T = (q2 × q′2) + α2q2

Collecting terms leads to the following vector equation
whose solution allows the reconstruction of the 3D scene
point P in the fiducial coordinate system:

Generalized Point Reconstruction

α1Rq1 − α2q2 = (q2 × q′2)−R(q1 × q′1)− T,

solve above equation forα1, and use below

P = q1 × q′1 + α1q1

3.2 Continuous Motion

In the differential case, we will consider the image of a
point P in space which is moving (relative to origin of the
camera coordinate system) with a translation velocity~t, and
an angular velocity~ω. The instantaneous velocity of the 3D
point is:

Ṗ = ~ω × P + ~t.

For a point in space to lie on a line with Plücker vectors
〈q, q′〉, the following must hold true:

P × q − q′ = ~0;
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As the point moves, the Plücker vectors of the lines in-
cident upon that point change. Together, the motion of the
point and the change in the Plücker vectors of the line inci-
dent on that point must obey:

∂

dt
(P × q − q′) = ~0, or,

Ṗ × q + P × q̇ − q̇′ = 0

In terms of the parameters of motion, this gives:

(~ω × P + ~t)× q + P × q̇ − q̇′ = ~0.

(~ω × P + ~t)× q = q̇′ − P × q̇. (5)

which are constraints relating the camera motion and the
line coordinates incident on a point in 3D for a particu-
lar rigid motion. On the image plane, the image of this
point is undergoing a motion characterized by its optic flow
(u, v). In Section 2.3, we related how moving across an
image changes the rays that are sampled. This allows us to
write how the coordinates of the Plücker vectors incident on
a point in 3D must be changing:

q̇ =
∂q

∂x
u +

∂q

∂y
v,

q̇′ =
∂q′

∂x
u +

∂q′

∂y
v, (6)

so that we can considerq̇ andq̇′ to be image measurements.
Then we can substitute Equation 1 into Equation 5 to get:

(~ω × ((q × q′) + αq) +~t)× q = q̇′ − ((q × q′) + αq)× q̇.

or,

(~ω×(q×q′))×q+α(~ω×q)×q+~t×q = q̇′−(q×q′)×q̇−αq×q̇.
(7)

The following identities hold when|q| = 1,

(~ω × (q × q′))× q = (~ω · q)(q × q′), and,

(~ω × q)× q) = (~ω · q)q − ~ω,

(q × q′)× q̇ = −(q′ · q̇)q,

Simplifying Equation 7 and collecting terms gives:

α((~ω ·q)q−~ω+q× q̇)+~t×q = q̇′+(q′ · q̇)q−(~ω ·q)(q×q′)
(8)

This vector equation can be simplified by taking the cross
product of each side with the vectorq, which gives:

−α(~ω × q) + (~t× q)× q = q̇′ × q − (~ω · q)q′ − αq̇.

Collecting the terms that relate to the distance of the point
along the sampled ray, then dividing byα gives:

(−~ω × q + q̇) =
−(~t× q)× q + q̇′ × q − (~ω · q)q′

α

which can be written more cleanly to define the optic flow
for a generalized camera under differential motion:

Generalized Optic Flow Equation

q̇ = ~ω × q +
−(~t× q)× q + q̇′ × q − (~ω · q)q′

α
(9)

For standard perspective projection cameras,q′ = 0, and
q̇′ = 0, and this simplifies to the standard optic flow equa-
tion (for spherical cameras):

q̇ = −(~ω × q)− (~t× q)× q

α

One approach to finding the camera motion starts by
finding an expression relating the optic flow to the motion
parameters that is independent of the depth of the point.
This differential form of the epi-polar constraint is:

q̇ × ((~t× q)× q) = −(~ω × q)× ((~t× q)× q).

This same process can be applied to generalized cam-
eras, giving:

Generalized Differential Epi-polar Constraint

(q̇ + ~ω× q)× ((~t× q)× q− q̇′× q + (~ω · q)q′) = 0, (10)

which, like the formulation for planar and spherical cam-
eras, is bilinear in the translation and the rotation and in-
dependent of the depth of the point. The next section in-
troduces a tool to calculate the sensitivity to noise of this
constraint for any specific camera model.

3.3 Fisher Information Matrix

Let ~p be a vector of unknowns, (in our problem,
〈~t, ~ω, α1, . . . αn〉), andZ be the set of all measurements (in
our case theu, v that are used to calculatėq, q̇′ using equa-
tion 6). The Fisher Information Matrix,F , is defined to
be [22]1:

F = E[
∂ ln p(Z|p)>

∂p
∂ ln p(Z|p)

∂p
].

For any unbiased estimator of the parameterp, the
Cramer-Rao inequality guarantees that the covariance ma-
trix of the estimator, (E[(p − p̂)(p − p̂)>]), is at least as
great as the inverse of the Fisher information matrix:

E[(p− p̂)(p− p̂)>] ≥ F−1.

If we model the probability density function of errors
in the motion field measurements as Gaussian distributed,

1This presentation follows [8] and [21], which use the Fisher Informa-
tion Matrix to study ambiguities and uncertainties for motion estimation
with standard cameras.
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zero mean, and covarianceσ2I, then the Fisher Information
matrix can be written:

F(~t,~ω,α1,...αn) =
1
σ2

∑
i=1...n

∂hi
>

∂p
∂hi

∂p
,

wherehi is the function that defines the exact optic flow at
pixel i for a particular set of motion parameters and scene
depths (these subscripts are to remind the reader thatF is
dependent on the these particular parameters).

To determine the form ofhi, we start with the general-
ized optic flow equation:

q̇ = ~ω × q +
−(~t× q)× q + q̇′ × q − (~ω · q)q′

α

and multiply through by theα and re-arrange terms to
get:

q̇′ × q − αq̇ = −α~ω × q + (~t× q)× q + (~ω · q)q′

Equation 6 defines how moving on the image plane
changes the Plücker coordinates of the ray being sampled.
DefineA andB to be the pair of2 × 3 Jacobians relating
motion on the image to changes in the direction of sampled
ray such that:

q̇ = ~uA,

q̇′ = ~uB,

where~u =< u, v > is the optic flow measured on the im-
age. Then we can rewrite the generalized optic flow equa-
tion as:

~uB[q]− α~uA = −α~ω × q + (~t× q)× q + (~ω · q)q′, or

~u(B[q]− αA) = −α~ω × q + (~t× q)× q + (~ω · q)q′ (11)

Defining C = (B[q] − αA)>((B[q] − αA)(B[q] −
αA)>)−1, we can then isolate the optic flow and get the
terms we need to define the Fisher Information Matrix2:

hi = ~u = (α~ω × q + (~t× q)× q − (~ω · q)q′)C.

It is thus possible to create an analytic form giving
the Fisher Information Matrix for a particular environment
(camera motion and scene structure). In the following sec-
tion we use this to measure of how well a particular vision
system can measure its ego-motion in a variety of environ-
ments.

2Recall that the matrices A, B, C, and the Plucker vectorsq, q′ are
different at each pixel, we have dropped the subscripts to facilitate the
derivations

4 Analysis

Different visual system designs are appropriate for dif-
ferent environments. Within the context of estimating ego-
motion, the relevant parameters are the system motion and
the distances to points in the scene. The environment is de-
fined as the distribution of these parameters that the system
will experience. This is a distribution over the set of param-
eters(~t, ~ω, α1, . . . αn). In our simulation, we choose this
distributionD as follows:

• ~t chosen uniformly such that|~t| < 1.

• ~ω chosen uniformly such that|~ω| < 0.01.

• 1
αi

chosen uniformly such that0 ≤ 1
αi

≤ 1.

Each point in this distribution has an associated Fisher
Information Matrix, the (randomized, numerical) integra-
tion of this matrix over many samples from this distribution
is a measure of the fitness of this camera system in this en-
vironment:

FD =
∑

(~t,~ω,α1,...αn)∈D

F(~t,~ω,α1,...αn)

Figure 3 displaysFD for a number of different camera
designs. Each of these situations merits a brief discussion:

1. A standard video camera with a50◦ field of view.
The covariances reflect the well known ambiguities be-
tween some translations and rotations.

2. The flow fields from a stereo pair have the same ambi-
guities as a single camera. The covariance matrix has
a larger magnitude because two cameras capture twice
the amount of data. This matrix (and these ambigui-
ties) do not apply to algorithms which use correspon-
dence between the stereo imagery as part of the motion
estimation process.

3. A “stereo” camera pair in which one camera looks
backwards does not have the standard rotation-
translation ambiguity, but has a new confusion be-
tween rotation around the axis connecting the cameras
and rotation around the common viewing axis of the
cameras.

4. A camera system with cameras facing in opposite di-
rections but aligned along their optic axis is perhaps
the best design for two standard cameras. The “line”
ambiguity (discussed under camera design 1) is still
present

5. Three cameras aligned along three coordinate axes
show a small covariance between translation and rota-
tion. This may be an artifact of the strong covariances
between each camera pair.
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6. Six cameras placed to view in opposite directions
along coordinate axes show no ambiguities.

7. Six cameras placed to view in every direction, but
not as matched pairs along each viewing axis. This
situation models the “Argus Eye” system [3], which
reported very accurate estimates of system rotation,
again arguing that the covariance shown here may be
an artifact of the strong covariance (in rotation) be-
tween each camera pair.

These results fit published empirical data which finds
that system rotation and translation is much better con-
strained for a multi-camera system (the Argus Eye), than
for single cameras [3, 2] (see Figure 4).

In this work we have carried out an analytic comparision
of different types of cameras (as opposed to different algo-
rithms) for the ego-motion estimation problem. As tech-
nology and computational power increase, the effectiveness
of visual algorithms will be limited only by inherent sta-
tistical uncertainties in the problems they are solving. The
Fisher Information Matrix is a powerful analysis technique
that can apply to any problem which involves searching for
a parameter set that minimizes an error function. Design-
ing camera systems optimized for particular environments
is necessary to make computer vision algorithms successful
in real world applications.
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